Nonlinear stiffness characteristics of the annular ligament.
نویسندگان
چکیده
The annular ligament provides a compliant connection of the stapes to the oval window. To estimate the stiffness characteristics of the annular ligament, human temporal bone measurements were conducted. A force was applied sequentially at several points on the stapes footplate leading to different patterns of displacement with different amounts of translational and rotational components. The spatial displacement of the stapes footplate was measured using a laser vibrometer. The experiments were performed on several stapes with dissected chain and the force was increased stepwise, resulting in load-deflection curves for each force application point. The annular ligament exhibited a progressive stiffening characteristic in combination with an inhomogeneous stiffness distribution. When a centric force, orientated in the lateral direction, was applied to the stapes footplate, the stapes head moved laterally and in the posterior-inferior direction. Based on the load-deflection curves, a mechanical model of the annular ligament was derived. The mathematical representation of the compliance of the annular ligament results in a stiffness matrix with a nonlinear dependence on stapes displacement. This description of the nonlinear stiffness allows simulations of the sound transfer behavior of the middle ear for different preloads.
منابع مشابه
Histological study of the annular ligament in the rabbitfish eye (Siganus sp.)
Rabbitfish is economically valuable teleost species which lives in shallow coastal waters. Two species of rabbit fish have been recognized in southern sea of Iran (Persian gulf) as namely Siganus sutor and Siganus javus. In the current study, in order to investigate the histology of the annular ligament of the S. javus’ eye, the prepared sections of the eyes of twelve healthy specimens were stu...
متن کاملFree Vibration Analysis of Bidirectional Functionally Graded Conical/Cylindrical Shells and Annular Plates on Nonlinear Elastic Foundations, Based on a Unified Differential Transform Analytical Formulation
In the present research, a unified formulation for free vibration analysis of the bidirectional functionally graded conical and cylindrical shells and annular plates on elastic foundations is developed. To cover more individual cases and optimally tailored material properties, the material properties are assumed to vary in both the meridian/radial and transverse directions. The shell/plate is a...
متن کاملOptimal Intervertebral Sealant Properties for the Lumbar Spinal Disc: A Finite-Element Study
BACKGROUND In the lumbar spinal column, an annular disruption may be sealed after annulotomy to prevent further prolapse and instability. We investigated the biomechanical effects of various material properties of an injectable sealant. METHODS We used a 3-dimensional, nonlinear, osteoligamentous, experimentally validated finite-element model of the L3-L5 spine segment to study annulotomies o...
متن کاملThe effect of soft tissue properties on overall biomechanical response of a human lumbar motion segment: a preliminary finite element study
This study investigates the relative effect of soft tissue properties on the overall response of a human spinal motion segment using an osseo-ligamentous FE model of the Visible Man L3-L4 intervertebral joint. Model geometry was obtained from the Visible Man CT dataset using custom built image processing software. Non-linear soft tissue properties were obtained from the literature. Displacement...
متن کاملNonlocal DQM for Large Amplitude Vibration of Annular Boron Nitride Sheets on Nonlinear Elastic Medium
One of the most promising materials in nanotechnology such as sensors, actuators and resonators is annular Boron Nitride sheets (ABNSs) due to excelled electro-thermo-mechanical properties. In this study, however, differential quadrature method (DQM) and nonlocal piezoelasticity theory are used to investigate the nonlinear vibration response of embedded single-layered annular Boron Nitride shee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 136 4 شماره
صفحات -
تاریخ انتشار 2014